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1. Introduction

In a study of the solutions of the diffractioﬁ of an incident wave by a
cone of solid angle Q with zero normal derivative thereon it was shown [1]
th%t the resultant value at the vertex of the cone is ééual Eo 4ﬂ/t¢n-n)
tiAes the Galue of the incident wave at the same point in absence of the cone.
This relationship was obtained by rederiving Kirchhoff's formula [2] for the
wave equation from Green's formula, for the vertex of a cone. Corresponding
reéults can be cbtained for the Poisson equation and the diffusion equation.
Although the results ére different for different differential equations; they
can be summarized inra unified statement:

"The value at the vertex of the cone is equal to that of an extended
three-dimensional problem without the cone divided by the ratio of the local
solid angies of the domAins‘i.e;; by the faﬁio f&ﬁ-ﬂ)/(@ﬁ). In the extended
problem the inhomogeneous term ana the initial data are assigned to be zero
in the interior of the cone, In case that the normal derivative on the
surface of the cone is not zero, the prescribed data should be redistributed
and added to the inhomogeneous term for the extended problem."

This unified statement suggests that it may be proved directly from
certain properties common to the differential operafors of those equations
without making use of the Green's theorem and Green's function for each
differential equation indiwvidually. Such a general approach can be used
when the value at the vertex is identified as the limit of the mean value
‘over the local spherical cap extérior to the cone. Therefore, the original
plan of présenting the special analyses for eécb of these differential

equations separately is abundoned in favor of the present general approach.
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In the next section conditions on the linear differential operator L and
the curvilinear orthogonal coordinates §, n,  are established so that the
"spherical" mean of the solution of Lu = £ in a domain D subjected to
appropriate boundary and initial conditions can be determined directly as
thé solution of a problem with only one space variable., The domain D is
bounded by a "conical" surface S, generated by the Z-coordinate lines and by
two truncating constant E-surfaces S1 and 52. The "spherical” mean u(g,t) is
defined as the mean value of the solution u over ‘a constant E-surface in the
closed region D, Conditions are then established so that the "spherical
mean of the solution in D will be proportional to that of a known solution in
a different region ﬁf For the special case that the surface 51 at £ = gl
degenerates to a point, the vertex of the "cone", the relationship for the
spherical means is also valid for the value u at the verteﬁ. These state-
ments are the essence of the Theorems I and I; and the two corollaries in
Section 2, .The aforementioned unified statement on the value at the vertex
of a cone is im:.'luded as a special case of Corrollary 2.

The direct determination of the "spherical" mean u(®,t) provides some
important information about the solution and also provides a test of the
accuracy of the numerical approximation to u itself (see, e.g. (31, 41

Sections 3 to £ present the application of the thecrems to various
physical problems. They can be read independently.

Sectjon 3 applies the theorems to biharmonic equations governing the
deflection of a circular sector plate subjected to a stationary or moving
load. The meaﬁ deflections and in particular the deflection at the tip are

identified as the symmetric deflections of a circular plate with equivalent

loads.



In section 4, the theorems are applied to unsteady three-dimensiomal
diffusion problems in a wedge and iﬁ a domain bounded by two cones
with a common vertex. The demonstrations of how to obtain results directly
from the theorems due to the particular geometries of the domains are, of
course, not restricted only to the diffusion problems. The third example
shows their applications to the diffusion of pollutants in a moving medium.

In section 5, the theorems are applied to the diffraction of an incident wave
by a cone of solid angle (1. The spherical integral of the resultant wave is
equal Eo that of the incident wave without the come. The value at the vertex
is equal to the value of the incident wave intensified by the factor 4m/(4m-Q)
as stated in Theorem III. 1If the incident wave is reflected and diffracted
at least by part of the surface of the cone for all time, the primary wave
which is known say for t < 0 is composed of the incident wave and those
reflected and diffracted waves. The spherical integral of the resultant wave
for t > 0 canvagain be related directly to that of the primary wave as stated
in Tﬁeorem IV. Their applications are demonstrated by three examples. They
also illustrate how to apply the theorem to bodies which are composed of cones
of finite length by making use of the finite speed of propagation.

In section 6, the theorems are applied to the reduced wave equatjon.

In particular, for the diffraction of a plane wave or a cylindrical wave
by 2 cone of infinite length, the Sommerfeld radiation conditions are not
applicable, These theorems provide a necessary condition for the resultant

wave,



2. Direct Determinability of the Mean-value Over a Curvilinear Coordinate

Surface

Let u(x,y,z,t) be the solution of a linear partial differential equation

(2.1) Lu = f(x,y,z,t) inD for t>20

where x,y, and z are the Cartesian coordinates and t denotes the time variable
Let §, m, { be a set of curvilinear orthogonal coordinates. The element of

arc lenéth is given by

(2.2) dax? + dy? + dz? = oPag? + plar? + y2ac?

The domain D is ﬁounded by two constant E-surfaces S1 and Sé and a cylindrical
surface Sc generated by €-coordinate lines with §2 >8> gl (see Fig. 1). 1In
;he €, N, { space, the domain D is é right cylinder parallel to the g-axis
with base area B-in the n-C plane., The initial and boundary conditions will
depend on the operator L. It will be assumed henceforth that these conditions
and Eq. (2.1) form a well posed problem. To be more specific, Eq. (2.1) is
assumed to be second order in & and the standard boundary conditions of the

third type [5] will be imposed, i.e.,

Db u - ;
(2.3) | aju + («1) bj ug hj (nig,t) on Sj for ; 1,2,

whereéjand bj are non-negative functions of t and aj + bj is greater than

zero. The required boundary condition on Sc will be specified later in

Theorem I. The initial conditions at t = { are



.

(2.4) == 9 (x,y,2) inD for k =0,1...K1

Q)

.y

t

a/

where K is the order of the differential operator L with respect to t. It
will be assumed, throughout this paper, that all the given delta f, h and qk
are piece-wise continuous in their domains of def1n1t10n that a, B, Y process

continuous first derivatives and that the solution u has continuous first
derivative in the closed region D i.e., D and its boundary.
" The generalizations of the initial conditions (2.4) and of the boundary.
'conditions (2.3)on Sj wien Eq. (2.1) is of any order in B will be discussed
after Theorem I,
The "spherical™ mean v(Z,t) of a function v(2,n,(,t) is defined as the

mean value of v over the constant g surface Sg in D, i.e.,

V(E,t) = ff v ds/ .U ds
(2.5) ff v BydndC / H Bydndg

Since the "spherical" mean involves only one space variable, it would be
of interest to kmow under what conditions on the operator L and the curvilinear
coordinates and with what type of boundary conditions on the surface S will it
be possible to determine che "spherical' mean u(g,t) d1rect1y prior to the

solution u (g, n {,t) itself. co=

The linear differential operator L and the curvilinear coordinates are

assumed to fulfill the following four conditions:



(2.6) i) L= L1 + L2

where L1 involves only E and t,

{ii) L2 u can be written as the divergence of a vector A in a

congtant & surfaces, i.e.,

2.7) \ L, u=div A = [ (chn) + (o;SAg)]

1
2 ¢ =7y " an aC

where Ah and Ag are linear combinations of u and its partial derivatives and are
identified as the m- and {-components of the vector A with Ag = 0,

' (1ii) The operator L, commutes with the averaging operator ( )

1
defined by Eq. (2.5), i.e.,

(2.8) a.

(Llu) = Ll

When L, involves differentiation with respect to £, the dependence of the area

1

element of the surface S, on g should be separable, i.e.

g

(2.9) By = w& um,0.

(iv) The distance between two constant Z-gsurfaces is a

constant, i.e.,

(2.10) a=a(d).

On the surface Sc, the required boundary condition is to prescribe the

normal component of A i.e.



(2.11) A =g(f0,t) ons

where ¢ is the arc length along the intersection of S. and Sc' If there are

g
more than one boundary condition on Sc in the well-posed problem Eq. (2.11)
has to be a linear combination of them.

The divergence theorem is applied to the vector function A for the
voﬁnme 4D in D bounded by two constant £ surfaces Sg and Sg + A%. By

utilizing Eq. (2.1}, conditionms i) and ii) and the boundary condition of

Eq. (2.11), the result is

ag f.r aBy (L; u - ) dnd( = i2$ ag (€0
Sg asg :

Due to condition (iv), a(f) can be moved outside the integral. After dividing

the equation by the volume AD, the equation becomes

ﬁ (Lyu) Bydndg
s

(2.12) 8 rf = £(2,t) + B(Z,¢)
JJ Bydndg '
e
vhere
(2.13) B (E,t) =f g(g,0,t)do / H Bydnd(
asg Sg '

The leftside of Eq. (2.12) is the "spherical" mean of L, u which is equal to
L1 u on account of condition (iii). Equation (2.12) then becomes the

differential equation for 4. The boundary conditions and the initial eonditions



for u are supplied by averaging Eqs. (2.3) and (2.4). These results are

sumarized in the following theorem,

Theorem I

When the differential operator L and the orthogonal curvilinear coordinates
fulfill conditions (i) to (iv), the "spherical” mean u(Z,t) of the solution of
Lu = £-in D subjected to the boundary conditions of Eq. (2.3) and (2.11) and -

the initial condition of Eq. (2.4) is governed by the following equatioms:

(2.34)  D.E. Lyu(E,t) = £(2,t) + B(5,t) for & < § < g, and t >0,

(2.15) B.C. ad+ bjﬁg(-l)j = fi;(e),ac £ = g, for § = 1,2,

k- : .
(2.16) I.C. .au _ ik (8),at t =0 for § < £< &, and k = 0,1,...K-1.
at Fl . ) -

=

From physical point of view, the operations leading to Eq. (2.14) is
equivalent to setting up the "conservation" equation for a thin shell in D
between surfaces Sg and S§+ﬂg with thickness @Ag€. If f is interpreted as the
intensity of a spatial source distribution in D and g a2s a surface distribu-
tion of sources over Sc’ the inhompgeneous term in Eq. (2.14) for the
"spherical " mean represents a spatial source distribution independent of n
and { with intensity equal to the "spherical' mean of the spatial'distrihu-
tion £ plus a redistribution of the source on Sc with constant £ uniformly

over the surface SE'



It should be noted that in Theorem I, the operators on u in the initial
conditions and in the boundary conditions at & = gl, and g2 are the same as
those for u because these operators are independent of v and {. It is evident
that if the operators on u in Eq. (2.4) are generalized to be any linear
operator independent of n and (, then the same operators will appear in the
initial conditions on u, Similarly, the boundary conditions (2.3) on S1 and
52 can be generalized with total number of conditions equal to the order of
Eq. (2:1) in gl provided that those boundary operators on u are linear and
independent of M and {. The same operators will again be applied to u in its
boundary conditions on € = gl and gz_in Theorem I.

The geometry of the surface Sc or that of the base area B in the n-{
plane appears implicitly 1in the definition of the inhomogeneocus terms of
Eqs. €(2.14) and (2.16) and has no effect on how to construct the soluéion u of
those equatiogs. The solution u will not be changed if there is an inter-
change of the surface source distribution g with the gpatial distribution f
so long as the sum f +'§ remains unchanged. In particular, all the surface
gource g can be replaced by an increament of f in D by the asmount g with u
remaining the same. 1In physical problems, the inhomogeneous term f can contain
point sources in D, therefore, the surface source distribution can be absorbed
in f directly. In this respect, the discussions can be simplified by imposing

a homogeneous boundary condition on Sc’ i.e.
(2.17) A =20

% .
There are cases that u (E,n,(,t) which is the solution of the same set of

* , .
equations for u but in a different domain D , is given or can be obtained



e % %
easily. The "spherical" mean u(({,t) can be computed directly from u by the
definition of Eq. (2.5). It is therefore of interest to relate the "spherical

*

mean in D to that in D.

%* ' * *

Domain D is also bounded by two constant & surfaces Sl and 82 with §=§1

and gz'respectively and by a cylindrical surface generated by E-coordinate
lines with 8, > § > §; with base area B* in the m-{ plane.

From condition iii) on the curvilinear coordinates, the ratio of the area

of constant-f surface in D* to that in D becomes

@18 [[oyanac 7 [[ syanac = [[uem,0mac 7 [[ uen,oranac = o
Sg 7 B B*

where A is a constant.

It will be assumed that the supports in inhomogenecus terms in the
differential equation and in the initial conditions lie in D N Ik, and the
supports of the inhomogenecus terms in the boundary conditions on Sj lie in
B N B*. The solution u* in the domain D* is then defined as the associated
solution of u in D if they fulfill the same differential equation, the same
boundary conditions on §; and S,, and the same initial conditions, and the
homogeneous condition An = 0 on Sc for u and A: =0 on Sc* for u* where A* is
the vector A with u replaced by u*. The last condition implies either
g = g* = 0 or that the surface source distribution g has been absorbed in f.

Let G* designate the "spherical'' mean af.v* over a conétant g éurface in
D*. The mean values of the inhombééneous terms in the differential equations

. T % -k -
initial conditions and boundary conditions on Sj for u will be A times the

values for u, e.g.,

10 o | | | //



(2.19) Be= A E,

By theorem I, u* obeys the same equations as u with the exception that all

the inhomogeneous terms change by a factor A, therefore,

(2.20) u* (E,t) = A u(8,t) or u(§,t) =u*(g,t)/A,
This result is stated as follows:

Theorem IT

The "spherical' mean u(Z,t) of the solution u in D is equal to "spherical
mean u*(E,t) of the associated sclution u* in D* divided by the ratio of the
area of the constant ¥ surface in D to that in D%,

By using the definition of Eq. (2.5), Egq. (2;20) ﬁecomes

221 [[u@ncos = [[ e
*

ol Sg

This relationship restated in the following Corollary is useful when one of

the areas, say that of S*, is not finite.

g
Corollagx I

The integral of u(g,n,{,t) over a constant Z-surface in D is equal to

that of its associated_solution u¥® in D%,

A) Admissible Orthogonal Coordinates

Conditions iii) and iv) i.e. Eqs. (2.9 and 2.10), impose some
restrictions on the curvilinear orthogonal coordinates. It is shown in an

NYU Repor:t [6] that Eq.(2.10) requires the 2-coordinate lines to be straight

11



lines then the unit tangent vector.s is independent of 8. When & is identified
as the arc length, o(§) equals to 1. It is then shown in [6] that the constant
B-surfaces and the orthogonal coordinates, which are consistent with Eq. (2.9),
have to be one of the following three types:
a) .E is independent of m and (. The constant & surfaces are parallel
.planes say normal to x-axis. The variable £ can be identified as x while
- M,{ can be identified as y and z or a pair of orthogonal coordinates in the
y-z plane. The domain D is a right cylinder parallel to x-axis (see Fig. 2a).
bS' E_is dependent only on  and (. The constant € surfaces are coaxial

circular cylindrical surfaces., If the axis is identified as the z-axis. The

orthogonal coordinates can be identified as the cylindrical coordinates (0,6,z)

respectively. The domain is bounded by the cylindrical surfaces p §1 and

p = g2 and the "conical" surface Sc which can be defined as S(z,8) 0,
{see Fig. 2b).

c) Ji depends on both n and {. The variable & is identified as the
radiﬁl distance f to the center and 1 and { can be identified as the spherical
angles § and ¢ respectively or as two orthogonal coordinates on the spherical
surface. The domain D is a cone truncated by spherical surfaces of radii gl
and §2. {see Fig. 2c).

Under type ¢, the area Sr of a spherical cap in D is rzﬁc where Qc is
the solid angle of the cone. When gl = 0 the spherical cap S1 at r = gl
degenerates to the vertex of the cone and the spherical mean value u(0,t)
becomes the %alue at the vertex of th; cone., Theorem I will therefore relate

the value at the vertex of the come D to that at the center of a spherically

gymmetric problem without the conical surface Sc, i,e.,

12



(2.22) u(r =0, 8,p,t) = u(0,t)

The boundary condition(s) at r = gl = 0 will be the spécification of the
behavior of u and/or its derivatives with respect to r as required by the
order of Eq. (2.1) with respect to 2. The same condition{s) will be imposed
onuatr =0,

When D* is another conical domain of solid angle Q: the ratio of the

area of spherical cap Sr in D to that of S: in D* is

* *
A=srlsr=nc/nc

When the required boundary condition for u on Sc’ Eq. (2.11), is
homogeneous, Theorem II yields that the spherical mean of the solution
' * *
u(r,8,v,t) in D is equal to that of u in D divided by A which is the

ratio of the solid angles, i.e.,

(2.23) & (r,t) =5 (c,t) / (n:/nc)

S
At r = 0, the mean values u, u are the values of u and u*® respectively at

the vertex. The following statement is now evident.

Corollarz 2

The solution u at the vertex of a cone Dwith 0 € r < gz are equal to
the associated solution u* at the vertex of cone D* divided by the ratio of
their solid angles.

For the special case that D* is the whole sphere, r < gz with (% = 4,

the associated solution u* is a solution inside the sphere in absence of a

13



conical surface. u* at the center of the sphere is related to the solution
u and the vertex of the cone D directly,

(2.24 u(r = 0,8,p,t) = g—" u* (r = 0,8,o,t)
. .

4
|

{

This equation is equivalent to the statement in Section 1 which summarizes
the results obtained by the applications of Green's formulas and the
appropriate functions to several equations of mathematical physics.
It'should be pointed out here that conditions for the direct deter-
mination of the spherical mean in Theorem I are not necessary. For example,
the operator L, invdlving the variables m and ( can be removed by means of

the Stokes Theorem if L.u can be expressed as the €-component of the curl of

2
a vector. Details of the alternate approach can be found in [6]. They will
not be presented in this paper because in most physical proﬁlems, the
governing equations are usually derived from thg conservation of certain
quantities and the representation of L2 u as the divergence of a surface
vector is usually expected.

In the next sub-section it will be shown that several equations of

mathematical physics fulfill the conditions stated in Theorem I.

B) Equations of Mathematical Physics
For many equations of mathematical physical, namely the Poisson equation,
the unsteady diffusion equations, the wave equation, etc., the differential

operator involving the space variables is the Laplacian operator, i.e.

(2.25) L = div grad + Lt

vhere Lt involves differentiations with respect to time only.

14



To compare with the conditions on L, the vector A in Eq. (2. 7) can be

jdentified as the projection of grad u on the n-{ surface, i.e.

| (2.26)

1}

]
W|
15

3

+
~
A

™y

where m and { are unit vectors along the m and (-coordinate lines respectively.

H

From the definition that Lu = L,u + div A, the operator L, is (7]
1 2 &y 2
L, = == +L
luﬁva(aa) t
g g
When the coordinates are admissible in the sense defined in the preceding

subsection L1 becomes

ool rurey
2.27) Ly = 5@ > fv(®) agJ”‘t

It is clear that L. involves only & and t and the operator L defined by (2.25)

1
fulfills the four conditions required for the direct determination of the
"spherical” mean. The normal component of A on S is equal to the normal

component of grad u, The required boundary condition on Sc’ Eq. (2.11),

becomes

(2.28) au .
an =B (gsost) on SC

"In the analysis of diffusion through a moving incompressible fluid, the
equations for the velocity field q is uncoupled from the equation for the
diffusion process, For a given velocity field, the operator L is of the

form

15



(2.29) L=3 +g.-9-4

Lu can be rewritten as u + 7V . [qu - wu]. To be consistant with the conditions
for Theorem I, it is necessary that the Z-component of the velocity is
independent of m and { and that (q . E)u-(au/an) is prescribed on the surface
Sc. The second condition is equivalent to the prescription of the flux of u
through the surface Sc‘ For the special case that the surface Sc is a rigid
wall, 94 1 vanishes on Sc and the required boundary condition on Sc is the

prescription of au/an i.e. again Eq. (2.23).

For biharmonic equations, say

{2.30) L =45+ Lt

the vector A in Eq., (2.7) can be identified as

.

(2.31)

—

- 13 1 3u
nlgipte+8ly G !

+ g[% 2 Au+YL§($2 2 ]

where Lg = ;%ET gE (v %E). From the definition of Lu = Llu + d;v A, it can be
)2

seen that the operator L1 is equal to (Lg + Lt and involves only t and &, The

required boundary condition on Sc in Theorem I becomes

n 3N

(2.32) Au +n nBLg Gin Y+n . QY Lg (Y‘ac) g (§,0,t)

It is obvious that the operator L in general will not be invariant with
respect to a translation of the origin, see for example Eq. (2.29). However,
L

many of the operators do have this invariant property, e.g., Eq. (2.25) and (2.30},

16



and then Theorem I can be used to yield the mean-value theorem for any interior

point and to develope solutions for initial value problems.

C) Connections with the Mean-Value Theorem and Initial Value Problems

In this subsection it is assumed that the operator L fulfills the conditions
in Theorem I and possesses the property of invariance with respect to a transla-
tion of the origin. Any interior point P. of D can be chosen as the origin
and Theorem I can be applied to determine directly the spherical mean u inside
a sphere 82 lying in D and centered at Po' The spherical mean and in particular
the value of u at Po. is related to the boundary data on S2 by solving a problem
with only one space variable. Thus a mean value theorem for Eq. (2.1) is
established. Of course the boundary conditions on the conical surface Sc will
not appear in this consideration,

For an initial value problem, the domain D is the whole space. Any point
Po can again be chosen as the origin and Theorem I will relate the solutiom at
P0 to the initial data by solving directly the equation for the spherical mean.
Ap;;.\lications of spherical means to initial value problems in this respect éan
be found in [5] and [8].

The theorems in this section and the examples in the following sections

deal with initial boundary-value problems. Additional examples can be found

in [6].

17



3. The Biharmonic Equation

The bfharmonic equation appears frequently in elasticity problems
namely in the plane stress or plane strain problems [9] and in the deflec-
tion of thin p]ates [10]. It is also the governing equation for a slow
viscous flow [11]. 1In this section u{r,0,t) will represent the deflection
of a thin circular sector plate in polar coordinates r,8. The governing

equation is

2
(3-1)  pau+ o = in D .

The domain D is the circular sector of radius R and angle=, i.e., 0 <r<R

and - -%/2 < 9 < %/2. For the two dimensional problem, eq. (2.31) reduces to

1 3 9 3 1 au
e G arfilr ok B0l

(3.2) A 2

[

= g Ae
Under theorem I, the two boundary conditions on Scy i.e., on the

two straight edges ® = =+ @/2, should be sufficient to specify Ay. As a

mathematical problem, Ag can be specified as one boundary condition and

the mean solution will be independent of the other boundary condition.

The two boundary conditions to be imposed for the plate will
appear naturally in the formulation of the governing equations from the
variational principa] [10]. The following terms appear in the line inte-
gral along the boundary

M, 36u + (Qn - s ysu
an . 38 '

where M, M__ and Qn are the bending moment, torsional moment and shear1ng

ns
force and n and s are arc lengths normal to and along the boundary respec-

tively, The line integral vanishes when one- of the following four pairs

18
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of boundary ‘data .are-prescribed: (i) u and du/3n, (ii) u and My, (111) M,
~and (Q, - aMn;/BS), (iv) 5u/3n - and (Q, - M g/35). When the boundary condi-
tions are homogeneous, the first three pairs are known as built-in, simple
supported and free edge conditions. The fourth pair will be called rotation-
constrained edge conditions, e.g., the edge is reinforced by a bar with
torsional rigidity much larger than its flexural rigidity to constrain the

deflection of the piate.

Along the straight edges of the sector plate,8 =x%/2,only the

fourth pair of the edge conditions will yield the data on Ay. They are
(3.3). ug = 0 and

(3.4) 1 3 (a) + (1-v) 22 (1 _3w) =g
r a6 arz r a0

for 0 < r < R where v denote Poisson ratio in this section. From eq. (3.3),
eq. (3.4) reduces to 3(Au)/30@ = 0. From the definition of Ag 1in eq. (3.2)

it is clear that the combination of egs. (3.3) and (3.4) yields

(3.5) AG =0

on®=2%%2, The two boundary conditions at the tip of the plate, r = 0, are
(3.6) u is finite and

(3.7)  Yim- r3_{ 1 B3, r duy- g .
r+o 3!"[' r 31“( _a_r)]

Equation (3.7) implies there is no concentrated load at the tip, otherwise
the 1imit will be non zero. The boundary conditions along the circular
arc r = R can be, .
(3.8) u =0and 3u/3r =0 for a built-in edge ,
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(3.9) u=0and3%/ar + (v/r) du/3r =0 for a simply supported
ledgefor‘ o] < %/2. The boundary conditions are at r = 0 and r = R do not
involve O, therefore, Theorem I can be applied to the sector plate to deter-
mine the mean U (r,t) directly and in particular the value at the tip
iu(O,e,t) which is T (0,t). The mean U in this two dimensional problem

iis defined as
. ar2
(3.10) w. (r,t) =J  u(r.0, t) do/a
r -ulz
The following two examples will deal with the static and unsteady problems

respactively.

Example 1. Deflection of a sector plate due to a stationary concentrated

load. For a concentrated load P applied at a point{ry, Oolin D the inhomo-

genous term f in eq. {3.1) becomes
(3.11) £ = (P/I) 8(r-ry) & (0 - 8y}/r

where I is the flexural rigidity of the plate. With a built-in edge along
the circular arc (eq. 3.8) and rotation-constrained edges along the straight

edge (egs. 3.3, 3.4), the mean deflection W {r) is governed by the equation

- d_ dé - (P/1} &(r-rg) /(ra)
By ("FTHFPU
The boundary conditions at r = 0 and r = R are given by egqs. (3.6), (3.7)
and (3.8) with u replaced T . The solution is

2 2
W) Tog o+ 0 ) (1 7

+rg?- r2) + (rg? + r?) Tog (r/rg)l Hir - rp)}

(3.13) T (r) =g f(r®+

where H is the Heaviside unit step function. The deflection at the tip
of the sector plate is
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(3.18) u(0,8) = T(0) = P [r2log Fo + (R? - rqy?) /2]

I 0 T 0
The mean deflection is the same as the‘symmetrfc deflection [10]

~ of a circular plate with built-in edge at r = R and a uniformly distributed

ﬂoad along a concentric circle of radius ry with total strength P(2m/a).
!

Example 2. Deflection of a sector p1ate due to a moving load

For a concentrated mvoing load of strength P, the inﬁomo-
geneous term f (r,t) is again given by eq. (3.11), however, ry(t) and
B, (t) are now given functions of t describing the motion of the load.
If the boundary conditions on the sector plate are the same as those
in example 1, the mean deflection w (r,t) is governed by the equation

(3.15) , 5 _ 8 2w , 32 U .
roy © 370 Y F op

| O

sle - vy (£)1/ (ra)

The boundary conditions atr = 0 and r = R are egs. {3.6), {3.7) and
(3.8) with u replaced by U. If the initial condition for u is u=uy =0

at t = 0, then the same conditions hold for u, i.e.
(3.16) u (r,0) = Ei (r,0) =0

It should be noted that eq. (3.15) does not involve 8, (t). Hence, the
mean deflection T (r.t) is independent of the circumferential movement of
the 1oad and remains the same if the load P moving along any radial line
with instantaneous position rg (t). @ (r,t) is equal to the symmetric
deflection of a circular plate with built-in edge at r = R, with same
initial condftions and subjected to a load of total strength P (2n/a)
uniformly distributed along the circle r = ry (t). The so]ytion for

the symmetric deflection can be constructed by making use of the ei;;n-

functions for the symmetric modes given in[12]: Procedures for the con-

struction of the symmetric unsteady solution are described in [13] and [14].



4. The Unsteady Diffusion Eguation
I#f ulx,y,z,t) represents the temperature variation in-

a stationary medium or the mass fraction of species in a diffusion

problem, u obeys the simple diffusion equation
(4.1) Lu = Au - C'Zut = f(x,y,z,t) in D for t > 0.

where C? the diffusivity constant. In addition to the boundary
conditions of eqs.(2.3) and (2.11), there is one initial condi-

tion, .
(4.2) ulx,y,z,0) = q,(x,y,2) in D

Two examples are presented to illustrate how to select
the curvilinear coordinates for a given domain and how toc apply
the Theorems and corollariés; These suggestions, which rely on
the geometry. of the domain, are also applicable to other problems
of mathematical physics. Of course, the final explicit formulas
will be different for different governing equations. The first
example illustrates the use of Theorem II to cbtain explicit
solutions along the edge of a wedge, and those for the planar,
the cylindrical and the spherical integrals in the wedge. The
second example shows the use of Theérem IT for the construction
of the spherical mean in a domain bounded by two cones with a
common vertex. The third example sﬂows how to apply Thecrem 1

to study the diffusion of pollutants in a moving medium and in

particular to obtain directly the total flux of pollutants going

upstream. .
Example 1. Three dimensional heat transfer problem in a wedge

Figure 3 shows that the domain D is a wedge with angle
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U. The edge 1s chosen as the z-axis. One face of the edge 1is the
x-z plane (¢=0). Due to the method of superposition and the
Duhamel's principal, it suffices to consider the simple case

of homogeneous equation and boundary data while the initial data
is a point sourcé located at a point P(xl,yl,O) with strength Q,

ie., £f=10, g =0 and
4.3) qo(x,y,z) = Q G(X—Xia Y“YlaZ)

with x' = p cos ¢ , vy =p sin¢ , p >0 and 0 < ¢ < u.
1 1 1 1 1 1 1 1

In absence of the wedge, the solution u¥* of the homo-
geneous heat conduction equation in the whole space under the

initial condition of eqg.(4.3) is [ 15]
* o
(G .4) u (x,y,z,t) = Qlurncit)y=3/? exp{-rf/(uczt)}

wherg r is the distance from (x,y,z) to the location of the
source.

In term of cylindrical coordinates p,$, and z, z can
be identified as the £ coordinate and the planar integral of the
solution u in the wedges at constant z is equal to that of u#

in the whole space by Corollary 1, i.e.

: u
IP(z;t) = f pde [ d¢ u(p,9,z,t)
0 0 _

= [ dxf dy u*(x,vy,2,t)
-0 -, ]
(4.5) = Q(unc?t) /2 expl-z%/(uC2t)] .

Tf now P is ddentified as £. A constant {-surface is
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a cylindrical surface with radius p. Corollary 1 gives
immediately the cylindrical surface integral of u, i.e., [ 7]

o

u
Ic(p,t) = fdz [ pdd ulp,d,z,t)
- 0
i o 2T
= fdz [ pdd u*(p cos ¢, p sin $,7,t)
-t 0

= Q p(2 c2e)7? Io[ppl/(2czt)] exp{-(p?

(4-6) + pi)/uczt}

Since any point A(0,0,2p) on the edge can be identified

as the vertex of a cone with solid angle 2u the point A can be

chosen as the origin of the spherical coordinates (r,8,0). The
value of u at A is therefore relatea to u* by corollary 2,
u(0,0,2,,t) = —= uk(0,0,2,,t)
2y
(4.7). = (2m/u) Q(uﬂczt)'3/2 exp{-[pf + (zl-zo)z]/(uczt)}

The spherical integral of u with A as the center is also related

to that of u* as follows

T i)

H m
r? f sin 6d8 f d¢u = r? f sin 648 f dp u®
9 0 0 0

1"

I (r,z,,t)
s

or

I_(r,z,,t) Qumc?t) "t/ 2 (e /r ) {expl-(n - n %]

(4.8) ~ expl-(n + nl)Z]}

where N2 = r2/uc?t) , nf = r;/(uczt)
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2 2,-% '
and r, = [p] + (2,-2)] is the distance from the

point source P to A,

1 Explicit formulas are obtained for the solution along
the!edge in eq.(4.7) and for the integrals of the solution on
a constant z-plane, and a cylindrical surface with z-axis as
its axis and with radius p and on a spherical surface of radius
r centered at a peint (0,0,z_ ) on the edge in egs.(4.5),(4.6)
and (4.8) respectively. The only missing information about the
solution is its dependence on the variable ¢. The success of
obtaining so many explicit results from the corollaries 1s due
to the special geometry of the domain, a wedge, and is, therefore,
not restricted to diffusion problem.only._

Example 2. Temperature field in a solid bounded by two insulated

conical surfaces with a common vertex.

As shown in fig.4, the inner and the outer conical
surfaces are nonintersecting. Their solid angles are 91 and
2, respectively with £, > Qx' With the boundary condition of
gu/9n = 0 on the two conical surfaces, theorem II and the
corollaries remain applicable with the sclid angle of the domain
D equal to Q, - Q:' Based on the reason stated in the first
example, it suffices to consider only the simple case df a point
source of strength Q at a point P in D at the instant t = 0.

The solution u* in the whole space without the conical
boundaries is again given by eq.(#.4). The temperature u at

the common vertex A is again given by the corollary 2.
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ufA,t) = u*(A,t)
? Q, - Q *
1 . 2
L
-A B Q - uc*t
= { a :
.9) 'R, - 27 (4ncit)?/?

where r = |PA| is the distance from the peint source to the
common vertex A. The integrél of the temperature over the
spherical surface S, in D with radius r and centered at A

is agaip given by the expression on the right side of eq.(4.8).

When the conical surfaces are of finite length E.2
the domain D is bounded in addition by an insulated spherical
surface S2 with radius Ez. The associated solution u®* should be
replaced by the solution in an insulated sphere of radius Ez
due to a point source at P at the instant t = 0. The value at the
vertex u(A,t) and the spherical mean can be related by Theorem I
‘to a spherically symmetric problem given in (15].

The axially symmetric temperature fieid between two
co-axial circular cones is investigated by Oberhettinger and
Dressler [ 16] Series sclution is constructed for the iéothermal
boundary ccndition; u = 0. For case of adiabatic boundary
condition, 3u/an = 0, only a brief outline of the method is
presented. The explicit results in this example would be use-

ful to check the numerical results of their analysis.



Example 3. Diffusion of pollutants in a moving medium. .

To be more specific, the conical domain D will be an open
channel connecting two large reservoirs. The channel is assumed fo

be of constant depth, h. The domain D is defined by

(4.10) &, < E-<Ez,va/2<ﬁ<u/2 and -h < g =2 <0

For a constant area channel £ = x and n = y; a is the width of the
channel. For a divergence channel, € = r, and n = @3 a is the diver-

gent angle of the channetl.

The flow is assumed to be incompressible and the velocity field

can be represented as

\
(4.11) q = gV (£,/8)

where V is the velocity at the section £ = £,; X = 0 for a constant area

channel and A = 1 for a divergence channel.

The governing equation for the diffusion of a pollutant in the
channel is [15].
3u Er* du _¢2 A = C2f,
12y 3t T V) %

The boundary condition on Sc ji.e., on the wetted walls of the
channel and on the free surface is

(4.13) u =0,
an -

The boundary conditions at the upstream and downstream ends of

the channel will be

u=0 at&=g and £= E,
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because of the large sizes of reservoirs. The inhomogeneous term f
represents the source of pollutant in the channel. For unsteady prob-

lems an initial condition, say u = 0 at t = 0, shall be added.

. If the pollutant is dumped at a point £, g, z,inData

}ate Q(t), then f can be written as
A
(4.14) f =0 &(¢ -Eo) §(n - my) §(z - ZO) /&
The mean solution u (£, t) obeys the equation

4.15) i T VT, A W
(#15) 2 vl fo-olfE e gl 0 s g)E

The boundary conditions are

(4.16) u=0 atf=¢g and g

The mean solution G"(E,t) can be obtained directly and is inde-
pedent of ny and 2z, of the point source. From u (£,t), Ué is obtained
immediate1y and is the quantity of interest in this problem. In particular,
ﬁé at £,, and £, represent the rate of the pollutant entering the upstream

and downstream reservoirs.

Explicit results will now be given for the steady problem to show

the difference between a constant area channel and a divergent channel.

The steady solution of eqs. (4.15, 4.16) for a constant area

channel (A = 0) is

28



a -(E- Bk  -(£. - E )k (£, - £k kX

L L S L
_ aV | | for £ <E<E,
‘e (g, - E)k (€ - £k KX

gv [1-e 2 e © M/l ]

o b

- for E,<E<E

where k = V/C?2 and X = E,- &,. The percentage of the pollutant reaching

the upstream reservoir is

' -kX
(4.17) aczqif(a,) - e (& =&k 1o ~(&; - Epkyf [l-e ]

-(£,- £1)k

noe as k =+ =

The percentage decreases exponentially in the distance from the source of

the pollution to the upstream station of the channel.
For a divergent channel (A = 1, V > 0), the steady solution is
(.18) Re e R
4.18) () - Q g - 2y _ qMffiz2 -1
o= a&ORe“‘Zj ]]{{Eo) gy -1l
Re
R rrEyo (e -
2 L) ] Hig-g)}

where Re = VE,/C2. The percentage of the pollutant going to the upstream

reservoir is

Re Re Re
wi(E1) 1o _ (B2/&) -1 _ &1 1- {E,/E2)
(4.19) — e Fey - () [ & IEI/EzFREJ
As Re + =, the percentage decreases as the Re-th power of the ratiO'iilzo.

When ¥ < 0, the flow is reversed from =g, to £ = £ through
a convergent channels Equations {4.18) and (4.19) remain valid for V <0,

however, eq. (4.19) defines now the percentage of pollutant going to the
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downstream reservoirs and

Re

as - Re » =

(4200 2 ENE a0 . ;. (k)
0 :,
The percentage going to the upstream reservoir can be computed from
g, a u”(£)/Q or can be seen from (4.20). It again decreases as the
(-Re)-th power of the ratio (£,/£,) as -Re + = in contrast with the

exponential decay law in a constant area channel.
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5. The Wave Equation

The propagation of acoustic waves or that of a single

component of electro or magnetic waves is governed by the simple
|
wave equation

{5.1) Lu = Au - C72 utt = f(x,y,2,t)

where C is the speed of propagation. The usual two initial

conditions are the prescription of u and u,_ at a given instant

t
say t = 0.
In diffraction problems, it is usually done to

(.
define an incident wave ulgx,y,z,t) and to designate t = 0 as

the instant the incident wave front hits the body. 1In other-

1'does not intersect the body for t < 0.

words, the support of u
The solution u(x,y,z,t) for t > 0 D,i,e., in the domain exterior

to the body is a solution of .the wave equation, eq.(5.1) subjected
to the initial conditions of
(1)
{(5.2) u(x,v,z,0) = u (x,y,z,0)
and

(i)
( L] > ,0
‘ut X,V ,2,0)

(5.3) ut(x,y,z,o)

and the boundary condition

(5.4) U.n_= 0 on SC‘,

where S is the surface of the body. When the body is a cone of
a!
solid angle Q, its exterior angle 2 , which is 4T - Q, is the
c .
: . . . (1)
solid angle for the domain D. Since the incident wave u is a

solution the wave equation in the whole space without the cone
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for t > 0 with the same initial conditions of egs.(5.2) and

(5.3), dh’can be identified as the associate solution u®* in the

whole space D* and corollaries 1 and 2 yield

(5l5)  ffouds = sf uW'ds
: S S ®
! T r
and
18§ (i )
(5.86) ulo,o0,0,t) = u (c.o,0,t)
b - Q

with §fr in D¥ Equation (5.6) is the result obtained previously
‘[1] by a different method.

If the resultant wave is written as the sum of the
incident wave and a secondary wave,which 1is the reflected and

the diffracted waves, i.e.,
()
(5.7) u=u +w

eq.(5.5) becomes

(i)
[f wds = fI ulds
(5. S S®.S
(5 8} r r r
These equations can be summarized in the following statement.

Theorem III

When an incident wave 1s reflected and diffracted by a
cone of solid angle @ after the instant t = 0, the spherical inte-
gral of the incident wave cut off by the cone is redistributed
exterior to the cone as the integral of the reflected and the
diffracted waves. The redistribution of the incident wave from
a spherical surface of angle U4m to that of 47 - @ intensifies

the value at the vertex by the ratio um/(irm ~ Q ).
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If an instant (say t = 0) cannot be found such that
the incident wave ig neither reflected nor diffracted by the
core, theoram IIIcannot be applled since the initial data can-
not be stated in terms of the incident wave alone. In other-

words, Theorem II cannot be employed to relate the solution u
» in D, i.e., exteriof to a ccnicél body Dp,to u?? in ;hé whole
spaqe without the body. However, it still can be used in diffraction
problems to relate the solution u to a known solution u* in D* which

is exterior to another conical body Dg with the same vertex as stated

ip the following theorem:
Theorem IV
If the support of the solution u* outside a conical body

D; does not intersect the conical body Dy for for t<0 and the Sur-
face of the cone Db contains the part of the surface of D; where
the incident wave is reflected or diffracted for t<0, then the

solution u in D , fulfills the following relationships

(5.9) u = ut for t <0,

}5.10) J/ udsS=ff u*as , forall t

Sp *
and
b - O
(s.11) ul0,t) = (o) ut0,t) , for all t

&
where S_ and Sr are the spherical surfaces outside the conical bodies
‘D, and D% respectively . The spherical surfaces are centered
at point 0, the vertex, and the solid angles of the conical

bodies are {3 and Gx respectively.
The two solutions u and u¥®* differ from.each other for
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t>0 because that the reflection and diffraction will then take
place over different surfaces. However, u and u® have the same
initial data at t = 0, therefore, Theorem II is applicable and
eqs.(5.10) and (5.11) are valid for all t.

Theorems III and IV are special adaptations of Theorem II
for diffraction problems. Their applications are demonstrated in
the following three examples. The first example shows a direct
aﬁplication of TheoremIV to a trihedral and the explicit formulas
become useful for +te more complicated problems in the next two
examples. The second and the third examples deal with bodies
which are composed of cones of finite length. These examples
illustrate how to apply the Theorems to each conical component

for a finite interval due to the finite speed of propagation.

Example 1. Diffraction by a trihedral.

Figure 5 shows an incident wave which is diffracted
all the time by one edge (0A) of a trihedral with solid angle
. The primary wave u(PLill pass over the vertex or one of the
other two edges OB and OE at the instant t = 0. The given
primary wave Jgnrepresents the incident and the diffraction waves
advancing over a dihedral of angle X formed by the two plane OAE
and OAB. The solution u exterior to the trihedral will differ
from u(p)only for t > 0.

If the planes dAé ;Hd QAB are extended beyond the edges

{p)

0B and OE to form a wedge in place of the trihedral, u =~ will be

the solution also for t > 0. Point 0 which lies on the edge of

the wedge can be considered as the vertex of a conical body of solid

angle 2y. With a” identified as u(P) and pras 2y, Theorem IV yields
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b - 2
(5.12) u(0,t) = LD X u(p)(O,t)

41 ~ Q
and i 27X
(5.13) SfudS =1r?® fsin 8 d8 f d¢ y®(r,8,¢,t)
0 1]
r

where r is the distance to the vertex 0, S, is the spherical sur-
face outside the trihedral, g = 0 is the édge OA and op = 0 is the

plane OAB.

Example 2. Diffracticn of a plane pulse by a rectangular block

(a two dimensional problem)

" As shows in Figure 6, a plane pulse of strength € hits
the first corner 0 of the block at the instant t = 0 at an angle
A with respect to the horizontal side 0GA. The pulse is reflected
by the two sides of the corner and the influence of the vertex is
confined by the circle of radius Ct. The solution outside the
circle and behind the reflected wave is 2e. The sclution inside
the circle is a conical solution(l7] in two variables, u,.(x,y),
with x = x/(Ct) and y = y/(Ct). Before the construction of the
conical sclution, the "spherical" integral and the value at the
vertex 0 will be related directly to the incident wave.

For the two dimensional problem, cylindrical coordinates,
P,8 with the vertex 0 as the origin will be used. The "spherical®
integral will become circular integral of radius p. Theorem III,

that is, eqs. (5.5 and 5.6) yields the circular integral of the .

solution u due to the diffraction by the first corner at 0

am/z zv(ﬂ
f ul(p,e,t) pdé = S u (p,8,t)pdb .
0 0 .
_ €@2mp) for p < Ct
(5.14) e[27-2 cos™'(Ct/p)IP for p > Ct > O
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and the value at the vertex 0,
4
(5.15) ul(O,t) = = 3 £ t >0

Equation (5.14) is wvalid only when the circle of radius p does
not receive the diffracted waves from the adjacent corners.
This condition creates an upper time limit for the validity of

eg.{(S.14). It is
(5.16) Ct < L (1 + sin A) - p

For eéﬁation (5.15), the time limit is given by eq.(5.16) with

p = 0. For the convenience of explanation, the width L of the
block is assumed to be shorter than its height H and the incident
pulse arrives at the corner A(L,0) before at the corner B(0,H)
i.e., L sin A < H cos ) is also assumed.

If the conical solution uc(§}§) is constructed by the
method of {171, it defines the solution u; for the domain exterior
to the first corner at 0. Theorem IVcan be used to relate the
diffracted wave at the adjacent corner A, to u when t > L sin A/C.
For a finite duration, corner A can be considered as the vertex
of a wedge. In terms of the cylindrical coordinates p1 and 91’
the domain D exterior to corner A is_—ﬂ/? < 81 < m and p1 > 0,

The associated domain will be the space above the line A0, and

its extension through A as shown by the dotted line in Fig.s,

i.e. 0 < 6; <-T and pI >'0. Tor the associated domain D#, there
is no diffraction at the corner A, therefére, the associated
solution can be identified as u for t > L sin A/C. The %}rcular

integral of the solution u, exterior to the corner A is given

by that of ul,
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T T

S u (g ,0 ,t)d8 = f u (p ,0,t)de
/2 2 101 1 ] 11 1
for 2L, + L sin A - P> Ct > L sin A. The ratio of the angles
of the domain D®* and D at the vertex A is w/{(3m/2) = 2/3. The
val#e at the vertex A is

(2e) = % e for L >Ct > 1L sin A

u(k—,m for 2L + Lsin A > Ct > L

2

u (A,t) = {3
‘ Z
3 Cct —— —

These equations can also be obtained by applying the results of
example 1. It is clear that if the solution u, after the
diffraction at corner B is constructed by the method in (18]
Theorem IVwill be useful for the subsequent diffraction of u,

at an adjacent corner.

Example 3. Diffraction of a plane pulse by a cube.

Figure 7 shows a plane pulse of strength e hitting the
first corner 0 of a cube at the instant t = 0. The edges 0A,
0B and 0OE are chosen as the X =y X, and x - axes respectively.
The directional cosines of the normal to the plane pulse are
n;, n2 and na. They are all non—negative and the smallest one
is n . Before the arrival of the plane pulse at any other corner,
i.e., t < n L/C, the solution ul(xi,t) will remain unchanged if
the cube is replaced by the three dimensional corner at 0 with solid
angle Q = umn/8 = w/2. Equations (5.5) and (5.6) yield the
spherical integral of u outside the corner,

m T i

ffux,.,t)ds = f d8 [ u r? sin 8 d¢ .
s ' 0 -
r
{srz.q.jr for r < ct
) erir + Ct] 2w for r>Ct >0
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and for Ct < (1 + nl)L - r and the wvalue at the vertex 0

bre
Y-mr/2

4 (0,1) = = 2 for (L +n)L>cCt >0

The upper time limits are defined by the arrival of
the diffracted waves from an adjacent corner. Along the edges
and outside the domain of influence of the vertex i.e., r > Ct,

the value is same as that along the edge of a 90° wedge, i.e.,
ul(xi,0,0,t) = (4/3)e for Ct/ni > % ? ct,
i=1,2,3.

To obtain the complete solution ul(x,y,z,t) it is
necessary to apply the method off17] for conical solutions of
two variables outside the characteristic sphere r = Ct and the
method of [4] for the three dimension conical solutions inside
the sphere.' After the determination of the solution u for
the diffraction by the  corner 0, Theorem IV and in particular,
the results in example 1 can be applied to the solution of
diffraction of u by the adjacent corners.

When t > nlL/C, the wave front of u advances over the
edges AB' and AE' and the vertex A. A can be considered as the
vertex of a trihedral with solid angle 2 = #/2, and 0A as the
edge of a dihedral with angle x = 7/2. The results of example 1
i.e., egs. (5.12) and (5.13) are applicable until the arrival of

diffracted waves from other corners. The result’ are

(5.17) uZ(A,'i:) = 6/7 LI1 (A,1) »

and
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{5.18) i) (u2 - ul)dS = 0

r,!

where u, is the solution after the diffraction of u by the
corner at A, Sr.is the spherical surface outside the trihedral
with radius r' to its vertex A and the extension of u outside
its domain gf definition is equal to zero. Similarly, eqs. (5.12)
and.(5.13) can be applied for any point on the edge AB' (or AE')
before the arrival of the diffracted waves from the vertex A or
B!, h

The applicability of eqs. (5.12) and (5.13) to vertex
A to obtain egs. (5.17) and (5.18) does not depend on the facts
that u is a conicallsolution with respect to 0 and that 0 and A
are vertices of a cube. It is obvious that the vresults of example
1 can be applied to relate the solution u* of diffraction of a
wave by a vertex A of a polyhedron to the solution u of the
subséquént diffraction of u* by an adjacent vertex B of the poly-
hedron. If the polyhedron is convex, the solution u can be written
as u* + éd{ The extension of u* outside its domain of definition

equals to zero. There is a discontinuity in u* and also in &% byt
their sum is continuous. Theorem IV or Egs. (5.17 and 18) yield

(d}

(5.19) ff u ds = 9
S.r
and - -
B ,t) = u(B,t) - u*(B,t)
2% - 0 )
=2 . AL R t
(5.20) S u**(B,t)
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where y is the angle of the dihedral with edge AB and @ is the
'solid angle of the polyhedron at the vertex B. Of course, egs.

(5.19 and 5.20) will remain valid only before the arrival of

!
additional diffracted waves from the adjacent corners.

|
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6. The Reduced Wave Equation

. . . . . iwt
For periodic solutions of wave eguation v(x,y,z)e )

the amplitude function v is governed by the reduced wave equation

(6.1) Av + k%v = f in D

where k? = c2w?.

If the domain D is bounded and in particular a truncated
cone (Ez < =) the governing equation for the spherical mean v(r)

is an ordinary differential -

(6.2) (v'p?)' + x®pr*v = T

There is no difficulty to obtain the spherical meaﬁ v(r) for

EI <r< Ez and the value at the vertex of the cone when Ex = 0.
When the domain D is unbounded, there is the well-

known difficulty of what is the proper boundary condition at in-

finity. This difficulty does not appear for the solution of an

initial boundary value problem of the wave equation.

For the diffraction of a incident periodic wave with

amplitude Jljby a obstacle, the solution v can be represented in

the form

1)
v

{6.3) v = + W

where w is the sebondary wave, the diffracted and reflected waves.
When the obstacle is finite, the boundary condition at infinity

is the well known Sommerfeld radiation conditions (19 ]

(6.4) w = 0(r-') and w, *ikws= o{r-1)

The conditions can be deduced by treating the periodic solution
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as limit of an aperiodic solution for example the principle of

limiting absorption or limiting amplitude [20].

If the obstacle 1s unbounded, say a half plane, a wedge

or ﬁ cone, and the incident wave ¥ itself fulfills eq.(6.4),

i »

e.g. vV

is induced by a point sdurce, or a source distribution of
bounded support, the radiation conditionsof eq.(6.4) for the
secondary wave remain valid {21].

If the incident wave itself does not fulfill the Sommer-
feld radiation conditions, for example, the incident waves are
plane waves or cylindrical waves, the secondary wave due to
an unbounded obstacle may not obey the Sommerfeld

conditions. These difficulties are mentioned in [22] and

suggestions are made to separate the part of w which fulfill

the Sommerfeld condition from the second part, which does not. Explicit

determinations of the second part are demonstrated [ 221 for a plane and

a half plane and can be done for a wedge. For a conical body with
arbitrary cross-section, the determination of the second part 'in w

is not obvious. ,
In the first subsection, the incident wave is assumed

to fulfill the Sommerfeld conditionsand so does the secondary

wave. The corollaries of Theorem II are applied to relate

the spherical mean of the resultant solution to that of the

incident wave and to show that their relationships are the same as
those of unsteady solutions of the wave equation. These relation-
ships for the unsteady solutiong will now be assumed to be valid for
the periodic solution including the case that the incident wave does
not fulfill the Sommerfeld conditions and yield the necessary condi-
tions for the solution at infinity in the second subsection.
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A. The incident wave fulfillsrthe Sommerfeld conditions
Since Ji’and Ww both fulfill the Sommerfeld conditions,

so does the resultant solution vin the domain D outside a conical body
#
of solid angle 2. Without the body, i.e. in the whole space D ,

. L
then there is no secondary wave and the solution v is equal to
-]

" v and fulfills the same homogeneous boundary condition ©on r = 52 + @,

l.e. 2q.(6.4), .- Corollaries I and II are therefore

applicable, and the results are:

(6.5) ~ Jf wvds =7/ v ds
S Sk
r r
and
Lr (i)
(6.6) v(0,0,0) = —— v7(0,0,0)

* .
where Sr is the spherical surface with radius r from the origin

located at the vertex of the conical body and S. is the part of

the surface outside of the body. Equations (6.5) and (6.6) are
identical to the relationships for eq.(5.5) and (5.6). In terms

of the secondary waves w., g4.(6.5) becomes

(6.7) [f wad = £f ¥

This is identical to eq.(5.8) and has the same physical meaning
stated in Theorem IV, i.e., the spherical integral of the secondary
wave outside the body recovers the part of the spherical integral

of the incident wave cut~off by the body.

B. The incident wave does not fulfill the Sommerfeld conditions

In this case, the proper boundary condition at infinity

for the solution v or the secondary wave w is unknown, therefore,
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the corollaries cannot be applied. However, if the limiting
principle is accepted also for the diffracfion by an unbounded
body then the periodic solution vel¥t can be considered as

th% limiting solution {(t-»w) ofthe wave equation with an incident
wavg which is periodic behind a wave front advancing towards the
cone at finite time (say t=0). Equation (5.8) or Theorem IV
which holds for all time should be valid also for the limiting

solution. By this argument, eq. (6.7) is reestablished,

)

(6.8) frwds = [ff v'ds
Sp L

and also

(6.9) ffw.dS = fI vids .
s. © sk.g T
r r T .

They become now the necessary conditions for the secondary
wave w for any r including r =+ .
By looking at the Green's formula for the reduced

wave equation [ 2] the integral over the spherical surface of

large radius R is
-kr
(/S vds] S (S ) [f/ v_ds] e
v -
dar Lmr S r 4nR

SR r=R

The terms inside the first square bracket is recognized as the

R
is that of sources on S;. Equations (6.8) and (6.9) can there-

total strength of doublets on S, and that inside the second one

fore be interpreted as the following necessary conditions:

The total strength of sources induced by the secondary

wave on the spherical surface of large radius R outside the conical

body recovers that induced by the incident wave on the part of the

44



spherical surface cut off by the cone. The statement holds also

for doublets.
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Fig. 1
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Admissible Orthogonal Ccordinates and the Constant
£ -Surfaces:

(a) Parallel planes,

{b) Co-axial circular cylindrical surfaces and,
(c) Concentric spherical surfaces
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"~ Fig., 3 Three Dimensional Problem in a Wedge
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Fig. 4 Domain D bounded by two cones with a common vertex



WAVE FRONT AT t=0

. . . ) . * .
Fig. % Diffraction of a primary wave u by a trihedral
0 ABE of so0lid angle © (Dotted lines show the extension

of faces OAB and OAC to form a wedge of angle X)



]
-.

@
Y
\

(77 % 77777 TV

~

L — Jd 6

NRS
|

:ANANANANANAN AN NN

Fig. 8 Diffraction by a Rectangular Block (a two dimensional problem)



Fig.

7

INCIDENT
PULSE

2-D CONICAL
SOLUTION FOR
EDGE OA

t<0
C
3-D REFLECTED

CONICAL Xo ¥ WAVE
SOLUTION

INCIDENT PULSE -

nL/C>t>0

B
L -

Diffraction by a cube




